Information file for using ASI – version 2.0.0b

ASI: Advanced Symbolic Integration is a package of TI-BASIC functions that extends the AMS- (with heuristic integration procedures for evaluating definite and indefinite integrals. ASI has the following main features:

· One type of user input files: The input-functions nIntx(), nInty() and nIntz() have got a way of setting input-arguments quite similar to (. Therefore ASI should be nearly as easy to handle as (-even for new users.

· Evaluation of Standard symbolic Integral Class(es) (SIC): ASI can evaluate symbolically all integrals that can be evaluated symbolically by the AMS (fast).

· Evaluation of Extended Symbolic Integral Class(es) (ESIC): ASI can evaluate symbolically integrals that can’t be evaluated symbolically by (. Such integrals can both contain elementary and/or special functions.

· High flexibility: ASI allows the user to adjust the integration procedures by a graphical flag-setting-utility for each of the input-functions.

· A Powerful Structure: ASI 2.x.x is based on the Advanced Symbolic Management Standard (ASMS). This allows ASI and its special-functions to perform robust, powerful, fast and advanced reductions of expressions in elementary- and/or special-functions.
Before you begin to use ASI, please note that:

· This document is a rather long document, but most users only need to read the first 3 pages!

· As long as any file from ASI is stored do not delete the program named setflag().

· Symbolic inputs containing variable names starting with (int are not allowed in ASI!!

· nIntx(), nInty(and nIntz() must not be stored in the directory asiext\. Files using names from ASISFLIB must not be stored in the directories asiext\ and asi\.

· ASI may not work properly if a ASM special function is installed (like Calculus tools).

· ASI cannot perform matrix operations.

· ASI is first and foremost a program that allows end-users to develop, implement and run their own ESIC. The programming guide will be released with the next version of ASI (I hope).

· The syntax for nIntx(, nInty(, nIntz(is the same when using the same flag-settings.

· The mode Angle must be set to RADIAN when using ASI.

· Evaluation of numerical results from symbolic expressions can be performed in the asisflib\ library.

· I named the functions nIntx(), nInty() and nIntz() because they are “nearly” already in the TI menu (F3,B:). So ASI does not require any costume menu to be executed easily on a TI89.

Basic description of a MADS integration procedure:

Master Detect and Suggest (MADS) is the default integration procedure for integration with ASI. When an integral is found non-integrable by (, MADS will automatically search for characteristics in the integral and try find a suitable solution.

The syntax for indefinite integration is:

nIntx(function,var)

or

nIntx(function,{var})

or

nIntx(function,{var,constant})

The syntax for a definite integration is:

nIntx(function,{var, lower bound,upper bound })

The screenshots show examples of definite/indefinite integration:

[image: image1.png]
[image: image2.png]
[image: image3.png]
[image: image4.png]
Time consumption: In general it takes 10-30 seconds to evaluate an ESIC integral with MADS.

References: see the section substitution.

Evaluating integral(s) numerically by approximation:

The MADS/UDS procedure will only be activated if the integral is not approximated. To gain approximation go to approx-mode or in Auto/Exact-mode use the approx≈ button.

The syntax in this mode is equivalent to the one used by MADS - described in the previous section.

-Note in this state ASI will only evaluate SIC indefinite.

-Note when the signs of the upper and lower bound aren’t the same the integral will be split into two. This enables ASI to evaluate integrals like
[image: image5.wmf]dx

x

ò

-

-

10

5

|

2

/

7

|

||

 in one step.

If the integral contains 4 arguments the additional integration algorithms will be executed.

The additional integration algorithms can be set in the flag-setting-utility. The syntax is: nInt((function,{variable,lower limit,upper limit,@@}) ,where (= x,y,z.

Substitution:

Substitution is needed in cases where the symbolic parts of an ESIC contain functions with directory path or elementary-/special-functions.. In the asiext\ directory two functions for substitution can be found:

Using esub:

esub can make a substitution on an expression of the form f(var)dvar. Syntax: esub(f(var),oldvar,newvar=substitusion),

Example:
[image: image6.wmf](

)

a

x

t

x

e

esub

x

a

*

,

,

2

*

=

 -returns:
[image: image7.wmf]a

e

t

2

Using isub:

isub can make a substitution on an expression of two forms:

- nIntx/nInty/nIntz –using MADS syntax: isub(nIntx(f(var),{args}),newvar=substitusion)

Example 1:
[image: image8.wmf](

)

(

)

a

x

t

x

e

nIntx

isub

x

a

*

,

,

2

*

=

 -returns:
[image: image9.wmf]÷

÷

ø

ö

ç

ç

è

æ

t

a

e

nIntx

t

,

2

Example 2:
[image: image10.wmf](

)

(

)

a

x

t

b

a

x

e

nIntx

isub

x

a

*

,

}

,

,

{

,

2

*

=

 -returns:
[image: image11.wmf]÷

÷

ø

ö

ç

ç

è

æ

}

*

,

,

{

,

2

/

3

2

a

b

a

t

a

e

nIntx

t

-(–using AMS syntax: isub(((f(var),{args}),newvar=substitusion)

Example 1:
[image: image12.wmf](

)

(

)

a

x

t

x

e

isub

x

a

*

,

,

2

*

=

ò

 -returns:
[image: image13.wmf]a

dt

e

t

ò

2

Example 2:
[image: image14.wmf](

)

(

)

a

x

t

b

a

x

e

isub

x

a

*

,

}

,

,

{

,

2

*

=

ò

 -returns:
[image: image15.wmf](

)

a

dt

e

a

b

a

t

ò

*

2

/

3

2

Warning: the following sections are not aimed at inexperienced users!!

How to change the flag-settings:

To ensure the end-user a high level of flexibility, ASI offers a utility that can change parts of how an integral will be evaluated.

To enter the utility execute the program setflags():

[image: image16.png]
Push ENTER or ESC to get the main menu:

[image: image17.png]
By pushing the arrows ←↑↓ → or a number from 1 to 6 you can now interact in the program:

4: Here you can reset the flag for nIntx, nInty or nIntz individually or collected.

5: Gives the start-up info again.

6: Gives the more general information on ASI.

The other selections give menus where specific changes of flag-setting are possible. In these menus the currently enabled settings are marked by “√” (the OK character) and disabled by a: “■”:

1 to 3 –nIntx, nInty or nIntz: In these menus you can change individually the flag-settings of the input functions nIntx(), nInty() or nIntz(). Five flags are set at the same time:

Main def. SIC Alg (main definite SIC algorithm):

1 -(: A definite SIC integral will be evaluated through (.

2 -(-Bugfix: Will evaluate a definite SIC integral through a bug fixed ((see the section: Notes on bugs/misbehaviours in ASI).
3 –FDI*: FDI allows dealing with special limit issues. One of the advantages of using FDI instead of (is that at bounds going to ((the integral will be evaluated very fast. Example:
[image: image18.wmf]6

0

*

*

5

7680

*

2

1

a

dx

e

x

x

a

=

ò

¥

-

, takes 75min to evaluate when using (, but only 4sec with FDI. Another advantage is that some integral classes with bounds going to ((that can’t be evaluated by limit() can be evaluated as well:
[image: image19.wmf]dx

q

R

a

x

b

ò

¥

±

*

1

. Note that | will not have any effect on the way FDI evaluates definite SIC.

FDI can be an advantage as well as a trap because it prevents ASI from detecting if an integral is going to ((or is undefined. Furthermore, FDI can't evaluate integrals such as f(x) where
[image: image20.wmf]0

)

(

lim

¹

±¥

®

x

F

x

 (in many cases when
[image: image21.wmf]0

)

(

lim

=

±¥

®

x

f

x

 then
[image: image22.wmf]0

)

(

lim

=

±¥

®

x

F

x

).

Main ESIC Alg (main ESIC algorithm):

1 -MADS: ASI will use MADS when integrating non-numerical.

2 -UDS: ASI will use UDS when integrating non-numerical.

Use discrete i?:

1 -No: ASI will integrate as usual.

2 -Yes: ASI will substitute complex i with a variable. In some cases this can be useful.

Returned (-name:

1 -(: ASI will return an unevaluated integral as (would.

2 –nIntx, nInty or nIntz: ASI will return an unevaluated integral in the input function nIntx(), nInty or nIntz using MADS syntax.

Approx Alg (will only take place when performing numerical integration with 4 arguments):

1 -keep: Will keep the current alternative integration algorithm.

2 -new: A new menu popup: here you can enter a number # that will give the algorithm showed in the list:

@@ is the amount of intervals

1(
Riemann sum: left

2(
Riemann sum: right

3(
Riemann sum: midpoint

4(
Riemann sum: upper

5(
Riemann sum: lower

6(
Trapezoidal rule

7(
Simpson’s rule

@@ is the accuracy

8(
Simpson’s rule extrapolated

The syntax is: nInt((function,{variable,lower limit,upper limit,@@}) ,where (= x,y,z.

Basic description of an UDS integration procedure:

User Detect and Suggest (UDS) helps to understand how ASI handles integrals. This is needed when developing/debugging ESIC, but it can also be interesting for people that just want to try ASI working. In UDS mode you have to evaluate SIC first:

To evaluate a definite integral enter:

nIntx(expression,{variable,lower bound,upper bound,0})

When the integral is indefinite enter:

nIntx(expression,{variable,0}) or nIntx(expression,{variable,constant,0})

- If ASI returns an expression the integral has been fully evaluated by AMS.

- If ASI returns a list the integral(s) cannot be fully evaluated by AMS.

A returned list could be: {integral,expression}, where (int in the expression tells the placing of the integral. When nIntx() is a part of an equation or expression this will be worked into the list, integral (int will be the part of the equation inside (. In the following screenshot (int is
[image: image23.wmf]dx

e

x

ò

¥

¥

-

-

2

:

[image: image24.png]
Note that the operation on nIntx() (^2) is made on every element in the list, so when nIntx() is a part of an equation be aware of this.

When the integral that can’t be evaluated analytically by (only contains elementary functions, ASI will use the internal detection to determine if an integral is undefined, going to ((or not. Therefore you must give the signs of the symbolic values contained in the integral(s).

Example: Integrating the distribution
[image: image25.wmf]dx

e

x

a

ò

¥

¥

-

-

-

2

*

:

[image: image26.png]
Evaluating symbolic integral(s) by UDS that contains ESIC:

To evaluate a definite integral enter:

nIntx(expression,{variable,lower bound,upper bound,#})

When the integral is indefinite enter:

nIntx(expression,{variable,#}) or nIntx(expression,{variable,constant,# })
-where # is the number of ESIC. Look into the section ESIC_list and choose the correct integration method to evaluate the integral (if it isn’t there you can program it yourself). Note that a wrong choice will be detected and either result in a program crash or return an unevaluated integral.

If there are more integrals that can’t be solved by the AMS like:
[image: image27.wmf](

)

dx

x

e

x

x

a

n

x

a

n

ò

¥

+

-

+

+

0

*

7

6

*

2

2

1

4

5

2

1

*

*

They will be placed as separate elements in the returned list. When all the integrals in the list belong to the same ESIC, they will all be evaluated automatically by ASI. However, if they belong to different ESIC you have to split them by hand -see example of use 4.

Example of use 1:

Finding the average kinetic energy per molecule (Kav) of a gas in thermal equilibrium at absolute temperature T:
[image: image28.wmf]dv

v

m

v

f

K

n

av

ò

¥

=

0

2

2

1

1

*

*

*

*

)

(

. The integral is saved in the expression integral:

[image: image29.png]
First try if the integral can be analysed by SIC:

[image: image30.png]
The integral cannot be evaluated symbolically by SIC. Because Kav can’t go towards (you need to give signs for m, k and T. By looking into the ESIC_list you will find that the integral belongs to ESIC # 1:

[image: image31.png]
It takes 20sec to generate the result:
[image: image32.wmf]2

3

kT

.

Example of use 2:

Integrating the Gaussian distribution (
[image: image33.wmf]ò

-

dx

e

x

2

) in the interval:

1)]-(;([-Evaluating the integral by using SIC will return:

[image: image34.png]
The integral part of the returned result tells that the result from step 3 can be multiplied with 2 if you chose the bounds]0;([. But you can also integrate from -(to (directly:

[image: image35.png]
2) [a;b] – Some results depend on the sign of a and b, so it can be a good idea to tell AMS the sign of a and b, however in the example below it isn’t necessary:

[image: image36.png]
3) [a;([:

[image: image37.png]
The result is not fully reduced and must therefore be executed once more.

Example of use 3:

Easily solving of the integral
[image: image38.wmf](

)

dt

e

t

t

t

ò

¥

-

-

+

0

2

2

*

2

*

3

 with ASI:

[image: image39.png]
 Both of the integrals in the list belongs to the same ESIC, so it’s only needed to tell ESIC once:

[image: image40.png]
When a returned list contains a sum of integrals that doesn’t belong to the same ESIC, you need to use the procedure in example 4.

Example of use 4:

Easily solving of the integral
[image: image41.wmf]dt

e

e

a

x

t

ò

-

-

+

0

)

tan(

2

 with ASI:

[image: image42.png]
The integrals in the list do not belong to the same ESIC, so you need to separate the integrals into 2 different nintx() ESIC selections (1+2). Note that the flag: Returned (-name is set to nIntx.

1) Evaluate the first integral in the list:

[image: image43.png]
2) Evaluate the 2nd integral in the list:

[image: image44.png]
3) Insert the results in the last element from the list:

[image: image45.png]
After evaluation you must delete (int1 and (int2 to free the variables!!!

Technical information on ASI:

Contributors’ list (alphabetic order):

<Empty>

The directory asi\ must contain the files:

- Filename
-
author(s)

- argument
-
Mads Soendergaard

- cntrepc
-
ASMS

- cnvsflib
-
Mads Soendergaard

- colacom
-
Mads Soendergaard

- ctlfile
-
Mads Soendergaard

- dvarname
-
ASMS

- execute
-
Mads Soendergaard

- ext001
-
Mads Soendergaard

- ext002
-
Mads Soendergaard

- ext003
-
Mads Soendergaard

- ext004
-
Mads Soendergaard

- ext005
-
Mads Soendergaard

- extdsum
-
Mads Soendergaard

- extsf000
-
Mads Soendergaard

- extsf001
-
Mads Soendergaard

- flags1
-
Mads Soendergaard

- flags2
-
Mads Soendergaard

- flags3
-
Mads Soendergaard

- give0
-
Mads Soendergaard

- givesign
-
ASMS

- giveturn
-
Mads Soendergaard

- inflimit
-
Mads Soendergaard

- iszero
-
Mads Soendergaard

- masterds
-
Mads Soendergaard

- nInt1
-
Mads Soendergaard

- nInt2
-
Mads Soendergaard

- nIntx
-
Mads Soendergaard

- nIntx0
-
Mads Soendergaard

- nInty
-
Mads Soendergaard

- nInty0
-
Mads Soendergaard

- nIntz
-
Mads Soendergaard

- outaprox
-
Mads Soendergaard

- outesic
-
Mads Soendergaard

- outexact
-
Mads Soendergaard

- outmads
-
Mads Soendergaard

- outointa
-
Mads Soendergaard

- repc
-
ASMS

- setflags
-
Mads Soendergaard

- symetric
-
Mads Soendergaard

- testexp
-
ASMS

- testreal
-
ASMS

- testsign
-
ASMS

- testsym
-
ASMS

- varfree
-
ASMS

The directory asiext\ can contain the files:

- ceexlist
-
Mads Soendergaard

- csexlist
-
Mads Soendergaard

- esub
-
Mads Soendergaard

- intaprx0
-
Mads Soendergaard

- isub
-
Mads Soendergaard

- masterse
-
Mads Soendergaard

- masterss
-
Mads Soendergaard

- nInt001
-
Mads Soendergaard

- nInt001a
-
Mads Soendergaard

- nInt001i
-
Mads Soendergaard

- nInt001l
-
Mads Soendergaard

- nInt001p
-
Mads Soendergaard

- nInt002
-
Mads Soendergaard

- nInt002a
-
Mads Soendergaard

- nInt002i
-
Mads Soendergaard

- nInt002p
-
Mads Soendergaard

- nInt003
-
Mads Soendergaard

- nInt003i
-
Mads Soendergaard

- nInt003p
-
Mads Soendergaard

- nInt004
-
Mads Soendergaard

- nInt004a
-
Mads Soendergaard

- nInt004i
-
Mads Soendergaard

- nInt004l
-
Mads Soendergaard

- nInt004p
-
Mads Soendergaard

- nInt020
-
Mads Soendergaard

- nInt021
-
Mads Soendergaard

- nInt022
-
Mads Soendergaard

- nInt023
-
Mads Soendergaard

- nInt024
-
Mads Soendergaard

- nInt025
-
Mads Soendergaard

- nInt025
-
Mads Soendergaard

- nInt100
-
Mads Soendergaard

- nInt101
-
Mads Soendergaard

- nInt102
-
Mads Soendergaard

- nInt103
-
Mads Soendergaard

- nInt120
-
Mads Soendergaard

- nInt121
-
Mads Soendergaard

Reducing the size of ASI by deleting files:

If you want to save space from ASI you can delete the files named nInt@@@ in the asiext\ directory. @@@ is the number from the ESIC list – so deleting nInt021 will remove ESIC #21. Remember to delete all files from an ESIC example to erase ESIC #1, remove nInt001, nInt001a, nInt001i, nInt001l and nInt001p. If ASI can’t find a needed ESIC, ASI will inform you that it’s missing. You can also delete the substitution functions isub and esub.

ESIC_list:

ESIC containing elementary functions only:

1 (

[image: image46.wmf]dx

R

x

p

x

a

j

ò

±

*

±

*

 or
[image: image47.wmf]dx

R

x

B

A

x

a

j

p

ò

±

*

±

*

Special remark(s):
In many cases j and R can be symbolic.

2 (

[image: image48.wmf]dx

R

x

b

a

ò

±

±

)

*

*tan(

 or
[image: image49.wmf]dx

R

D

C

x

b

a

ò

±

±

)

*

tan(

*

Special remark(s):
Execution time very slow.

3 (

[image: image50.wmf]dx

e

x

x

a

n

ò

-

+

-

1

)

3

(

 or
[image: image51.wmf]dx

e

x

D

C

n

x

a

ò

-

+

-

1

)

3

(

4(

[image: image52.wmf]dx

x

a

trig

x

P

j

ò

±

±

)

*

(

*

 or
[image: image53.wmf]dx

x

a

trig

x

B

A

P

j

ò

±

±

)

*

(

*

20 (

[image: image54.wmf]dx

e

x

x

a

j

ò

¥

±

0

*

1

Special remark(s):
j>0

21 (

[image: image55.wmf]dx

e

x

a

x

b

ò

¥

±

0

*

1

)

*

sin(

22 (

[image: image56.wmf]dx

x

b

e

x

x

a

v

ò

¥

-

0

*

)

*

ln(

*

*

Special remark(s):
v is an integer or v+1/2 is an integer

23 (

[image: image57.wmf]dx

x

b

trig

e

x

x

a

n

ò

¥

-

-

±

0

*

)

*

(

*

*

2

1

24 (

[image: image58.wmf]dx

e

x

a

trig

x

x

j

ò

¥

-

0

1

)

*

(

*

Special remark(s):
j>0

25 (

[image: image59.wmf]dx

b

x

c

trig

e

x

a

ò

¥

¥

-

-

±

±

))

(

*

(

*

2

*

26 (

[image: image60.wmf]dx

x

b

trig

e

x

x

a

j

ò

¥

-

0

*

)

*

(

*

*

2

ESIC containing special functions:

100 (

[image: image61.wmf]dx

e

x

x

b

Ei

x

a

v

ò

¥

-

-

0

*

*

*

)

*

(

Special remark(s):
|Arg(b)|<(, Real(b+a)>0

101 (

[image: image62.wmf]dx

x

x

a

Ei

v

ò

¥

-

0

*

)

*

(

Special remark(s):
Real(a)(0

102 (

[image: image63.wmf]dx

x

b

trig

x

a

Ei

ò

¥

-

0

)

*

(

*

)

*

(

103 (

[image: image64.wmf]dx

x

b

trig

e

x

Ei

x

a

ò

¥

-

-

0

*

)

*

(

*

*

)

(

Special remark(s):
Real(a)>|Imag(b)|

120 (

[image: image65.wmf]dx

R

x

b

erf

x

a

ò

¥

-

±

0

*

*

)

*

(

121 (

[image: image66.wmf]dx

x

x

b

erfc

v

ò

¥

0

*

)

*

(

Notes:

- R: mostly R = e, but R is just a real value and R>0 (
[image: image67.wmf]a

a

R

R

-

=

÷

ø

ö

ç

è

æ

1

.

· j is a real value.

· n is an integer and n(0.

· v is a real value and v>-1

· p is a real value and P>0.

· a, b and c is a symbolic/numerical expression where Real(a, b or c)>0.

· A and B are limits that can be numerical or symbolic.

· C and D are limits that can be numerical or symbolic, in both cases C(-(and D((.

· trig can be cos() or sin().

Notes on bugs/misbehaviours in ASI:

· Results from evaluating ESIC won’t necessarily be valid for SIC.

Example 1: nIntx(x^A*e^(-x),{x,0,(})|A>0 returns A! – a result that is valid when A is an integer(SIC).

Example 2: nIntx(x^A*e^(-x),x) returns A!-incgamma(A+1,x) – a result that is not valid when A is an integer(SIC).

· Some bugs from limit() can give an unexpected behaviour.

Example: nIntx(x^A*e^(-x),{x,0,(}) returns undef although sign(A) is irrelevant!

· In some cases convergens of a definite integral won’t be evaluated because of time consumption and complexity –see the ESIC list to learn more.

Example: nIntx(x^2*sin(x^2),{x,0, (}) returns gamma(5/4)*((2*()/(2*gamma(1/4)), but the result is undefined!

The ASI (-bugfix:

The ASI (-bugfix solves problems that occur at some definite integrations in AMS 2.09/2.08/2.07. The problems arise if you try to get the exact result (either in AUTO or EXACT mode) of an integral when the complex mode (REAL. Then the calculator calculates both the approximated and the exact result. This behaviour can result in a very long calculation time, but with ASI (-bugfix definite integrals will be performed with a minimum of time consumption.

-Example:

[image: image68.wmf]dx

e

x

x

ò

¥

-

0

2

*

 - Returns
[image: image69.wmf]dx

e

x

x

ò

¥

-

0

2

*

 in EXACT mode, and it takes 35sec to execute also in AUTO mode (it returns the result 2, though approximated). nIntx(x^2*e^x,{x, 0,(}) Returns 2 in 2.5 sec:

[image: image70.png]
-More cases where ASI (-bugfix gives a significant speed increase:

expressions of the form:

1) Function class: a*x^n*e^x, n>1 and an integer.

Example:
[image: image71.wmf]dx

e

x

x

ò

¥

-

0

3

*

, returns: 6 after approximately 35sec.

nIntx(x^3*e^(-x),{x,0, ()}, returns 6 after approximately 3.5sec.

2) Function class: (a*sin(x)+b*cos(x))^n, n/2-is an integer.

Example:
[image: image72.wmf]dx

x

b

x

a

l

ò

+

0

2

))

cos(

*

)

sin(

*

(

, returns the result after approximately 18sec.

nInt2((a*sin(x)+b*cos(x))^2,{x,0,l}), returns the result after approximately 8sec.

Problems when integrating combinations of polynomials:

The (is slow and poor when is comes to integrating combinations of polynomials. Because ASI extends (, ASI will suffer from this problem as well. I have considered to make a Hermite algorithm that fix it, but it’s almost impossible because of an Approx/Exact bug in factor().

Glossary:

*FDI stands for: Faster analytical evaluation of Definite Integrals.

-ASI stands for: Advanced Symbolic Integration.

-SIC stands for: Standard symbolic Integral Classes, and is defined as: All classes of symbolic integrals that can be evaluated symbolically indefinite or definite by (.
-ESIC stands for: Extended Symbolic Integral Classes, and is defined as: All classes of symbolic integrals that can be evaluated, but can’t be evaluated symbolically indefinite or definite by (.

Further information:

-About version 2.0.0(b) of ASI:

The structure of ASI has been completely modified with ASMS. Furthermore ASI doesn’t require FDI and because of MADS it has become significantly more easy to use. I have also corrected some bugs and removed the corrupted ASIinfo.TEXT file. I believe that the heavily improved ASI structure has made ASI a very robust and handy integration program so I’m quite pleased with this update:-) The b version corrects some minor bugs.

-About version 1.00(b) of ASI:

ASI offers integration of special functions as well as it enables its end-users to make their own integral algorithm (to my knowledge ASI is the only program that allows its users to shape it after their need). It’s my hope that ASI - because of its simple use, the previously mentioned capabilities and the fact that at this point it is the only program for ESIC evaluation - will become the winning standard for ESIC/(SIC) evaluation. Version b corrects some naming faults.

New updates: Next update will contain a programming guide and many more ESIC.

Bugs: Write to the ASI-caretaker.

- Copyright 2003 ASI-caretaker - all rights reserved:

You are free to distribute the files of the entire zip file on any medium. As long as ASI is kept on a calculator, the setflags file must be there too. If you are sending ASI from one calculator to another, you must also copy the setflags file. It is not allowed to charge money for any part(s) of ASI. It is not allowed to publish any modified version of ASI. ASI is first and foremost a standard interface for integration algorithms so to maintain a descent level of quality of the ASI standard - only the ASI-caretaker may publish versions of ASI. If you have written an algorithm for evaluation of an ESIC and want to contribute it to the official ASI version, send it to the ASI-caretaker.

-Disclaims: Neither contributors nor the ASI-caretaker are responsible of any damages/problems that ASI might cause you or your calculator.

ASI-caretaker: Mads Soendergaard

mailto: sondermad@hotmail.com
-The release date of this document and ASI (official version 2.0.0b) is 08-03-2004.
1
18

_1121979241.unknown

_1138101869.unknown

_1138998946.unknown

_1138999161.unknown

_1139161138.unknown

_1139238083.unknown

_1138999195.unknown

_1138998958.unknown

_1138998595.unknown

_1138998672.unknown

_1138998560.unknown

_1123433004.unknown

_1124258427.unknown

_1124487978.unknown

_1123483096.unknown

_1123533016.unknown

_1124258348.unknown

_1123532919.unknown

_1123483014.unknown

_1123433020.unknown

_1123310656.unknown

_1123417727.unknown

_1123417770.unknown

_1123311113.unknown

_1123417623.unknown

_1123311167.unknown

_1123310667.unknown

_1122154105.unknown

_1122665792.unknown

_1123178339.unknown

_1123310615.unknown

_1122680828.unknown

_1122665388.unknown

_1122665470.unknown

_1122665357.unknown

_1122018943.unknown

_1121373302.unknown

_1121508906.unknown

_1121522246.unknown

_1121522445.unknown

_1121373310.unknown

_1112880408.unknown

_1115053827.unknown

_1116914665.unknown

_1114953800.unknown

_1111829868.unknown

_1111831176.unknown

_1112163226.unknown

_1111831148.unknown

_1111829836.unknown

