Info-file for the ASI Special-Function Library

Version 1.00

Introduction:

The ASI (Advanced Symbolic Integration) Special Function Library (ASISFLIB) is a special-function library that allows users to perform advanced numerical and symbolic operations. The ASISFLIB has been developed on the Advanced Symbolic Management Standard (ASMS) – see ASMS-documentation to learn more. This standard enables the special-functions of ASISFLIB to be used nearly as if they were build-in functions (like cos(),sin()) regarding the input/output argument formats. Furthermore, the functions are fully robust towards any changes in the mode-settings, and by flag-settings it is possible to change the way of executions of some ASISFLIB special functions. ASMS presents a robust and fully symbolic/numerical handling of the ASISFLIB functions, and it does not cause any significant slowdown. These are capabilities that enable ASISFLIB special functions to be used in ASI.

Four screenshots of how ASISFLIB functions behave for different input arguments:

[image: image1.png]
[image: image2.png]
[image: image3.png]
[image: image4.png]
Note that the mode Angle must be set to RADIAN when using ASISFLIB.

ASISFLIB special-functions. Behaviour in general:

Notice that some of the behaviours shown in this section can be changed by using the flag-setting utility. Furthermore, the behaviour of the files in ASISFLIB is independent of the current library.

The special-functions in the ASISFLIB react as expected of the build-in AMS functions (at least when using default flag-settings):

Symbolic input(s):

[image: image5.png]
Symbolic input arguments often result in a reduced symbolic expression in terms of elementary- or/and special-functions. Elementary functions are always preferred to special functions in the ASISFLIB.

Real/complex numbers:

-In exact mode real/complex numbers will be interpreted as exact unless the approx≈-button is used.

[image: image6.png]
In exact mode real/complex numbers frequently result in a reduced expression containing elementary- or/and special-functions.

-In approximated mode real/complex numbers will be interpreted as approximated.

[image: image7.png]
In approximated mode real/complex numbers will result in a numerical result or a reduced expression containing elementary- or/and special-functions.

-In AUTO mode real/complex numbers will be approximated if one of the input numbers is approximated or the approx≈-button is used. If input argument is exact real/complex numbers the behaviour of exact mode will take effect.

[image: image8.png]
Cases where the special function in ASISFLIB does not behave as a build-in AMS function:

[image: image9.png]
-In AUTO mode the expression 1.*i (complex i) will be reduced to i(exact), caused by an AMS-reduction. So to perform an approximate evaluation of i use the approx≈-button.

-Unless specified in this document by “{}” or ”[]”, no input argument can be a list or a matrix.

How to change the flag-settings:

To ensure the end-user a high level of flexibility, ASISFLIB special function library offers a utility that can change parts of the behaviours in execution of the special ASISFLIP functions.

Please notice that these settings should be managed by users that know what they are doing!

To enter the utility execute the program setflags():

[image: image10.png]
Push ENTER or ESC to get the main menu:

[image: image11.png]
By pushing the arrows ←↑↓ → or a number from 1 to 6 you can now interact in the program:

4: Will reset all the flags in ASISFLIB to the defaults.
5: Gives the start-up info again.

6: Gives the more general information on the ASI Special Function Library.

The other selections will give menus where specific changes of flag-setting are possible.

In these menus the currently enabled settings are marked by “√” (the OK character) and disabled by a: “■”:

1 -Output formats: In this menu you can change the output format of some special functions. Two flags are set at the same time:

Prefer ®spfunc name?:

1 -Yes: Insures in cases where a special function returns an non-evaluated result (in terms of special-functions) that it will always be expressed by a special-function name.

[image: image12.png]
2 -No: Enabling this flag will force executed special functions to return a non-evaluated result in an integral or alike (if it is possible).

[image: image13.png]
3 –Out-var(only if 2 is “√”): This allows end-users to change the name of the system-variable in which non-evaluated results are expressed. The system standard is φx.

Use AUTO mode sense? (Works only in AUTO-mode at real/complex numbers)

1 -Yes: Will force the special functions to return an approximated result if an exact numeric result is not possible.

2 -No: In cases where the input of a function is exact numeric and the function can only evaluate the expression through approximation, the function will be returned with a special-function. Unless the approx≈-button is used!

[image: image14.png]
2 -Expand: This menu enables some special-functions to do symbolic/numerical expansions:

Expand Γ(symbolic)?

1 -Yes: Enables the special-function gamma(), Γ(x), to perform symbolic expansion on some symbolic arguments:

2 -No: The function gamma(), Γ(x), will not expand.

[image: image15.png]
Expand Γ(number)? (Only visible if 1 is “√” in Expand Γ(symbolic)?)
1 -Yes: This enables the special-function gamma(), Γ(x), to perform number expansion on some number arguments:

2 -No: The function gamma(), Γ(x), will not expand.

[image: image16.png]
Γ([VAR]+1)([VAR]!? (Only visible if 1 is “√” in Expand Γ(symbolic)?)
1 -Yes: This enables the special-function gamma(variable+1) to expand into the factorial variable!:

2 -No: The function gamma(variable+1) will not expand variable!.

[image: image17.png]
5 –BesselJ(v,num): In this menu the behaviour of the output of BesselJ(exact(integer/2),exact(number)) can be adjusted.

In case of large integers an inconvenient reduction may result in incorrect results if they are approximated afterwards. Note that many functions depend on BesselJ so this setting may effect other functions such as Thompson’s and Hankel’s functions, BesselI, BesselK, BesselY. Notice that BesselJ(exact(integer/2),symbolic) results will suffer from the same problem when symbolic is set to an exact(number) and then approximated. Instead do result|symbolic= approx(number).

1 -Yes: This will make BesselJ return exact results.

2 -No: This will make BesselJ return an expression in BesselJ unless the result is approximated.

[image: image18.png]
- If the flags–LIST has been deleted: Notice that all the current flag-settings will be restored by starting the program setflags(). No ASISFLIB special-function can run properly without the flags-LIST!!!

ASISFLIB special-function list:

The functions are organised by group and subsidiary by normal names. To find a special-function by the ASISFLIB function-name look into the CATALOG help (CATALOG, F4, find the special-function in the list, F1) to learn its normal name.

Only the special-functions that are used in ASI and those on which they depend will be available in the package, as the ASISFLIB is a resource library for ASI. The non-available functions and groups are marked with red.

The Airy-function group:

Airy function Ai(x):

Airyai(x)

Airy function Bi(x):

Airybi(x)

The Bessel-function group:

Modified Bessel-function, Iv(z):

besseli(v,z)

Bessel-function, Jv(z):

besselj(v,z)

Modified Bessel-function, Kv(z):

besselk(v,z)

Bessel-function, Yv(z):

bessely(v,z)

Modified spherical Bessel-function,
[image: image19.wmf])

(

x

h

k

n

:
besselh(k,n,x)

Modified spherical Bessel-function, in(x):
sbesseli(n,x)

Spherical Bessel-function, jn(x):

sbesselj(n,x)

Modified spherical Bessel-function, kn(x):
sbesselk(n,x)

Spherical Bessel-function, nn(x):

sbesseln(n,x)

Hankel-function,
[image: image20.wmf])

(

1

z

H

v

:

hankelh1(v,z)

Hankel-function,
[image: image21.wmf])

(

2

Z

H

v

:

hankelh2(v,z)

The Beta-function group:

Beta-function, B(x,y):

beta(x,y)

Incomplete Beta-function, Bz(x,y):

incbeta(z,x,y)

The Error-function group:

Iterate integral of the erfc:

cerf(x)

Error-function:

erf(x)

Complementary error-function:

erfc(x)

Imaginary error-function:

erfi(x)

Inverse error-function:

inverf(x)
Inverse complementary error-function:
inverfc(x)

The EXPONENTIONAL INTEGRAL-function group:

Exponentional integral, Ei(x):

ei(x)

Exponentional integral, En(x):

expint(n,x)

Logarithmic integral, Li(x):

li(x)
The factorial-function group:

Factorial, x!:

fac(x)

Double factorial, x!!:

dfac(x)

Replaces x! with fac(x) in an expression:
replcfac(expr)

The Fresnel-function group:

Fresnel cosine integral, C(x):

fresnelc(x)

Fresnel auxiliary-function F(x):

fresnelf(x)

Fresnel auxiliary-function G(x):

fresnelg(x)

Fresnel sine integral, S(x):

fresnels(x)

The GAMMA-function group:

Gamma-function, ((x):

gamma(x)

Incomplete gamma-function, ((x,z):

incgamma(x,z)

Incomplete gamma-function, ((x,z):

igamma(x,z)

Regularized incomplete gamma-function, Q(x,z):
reggamma(x,z)

Logarithm Gamma-function, ln((x):

lngamma(x)

The Hypergeometric-function group:

Kummer’s H.-function, 1F1(a;b;x):

hypg1f1(a,b,x)

Gauss’ H.-function, 2F1(a,b;c;x):

hypg2f1(a,b,c,x)

Generalized H.-function, pFq(a;b;x):

hypgpfq({a1, a1,…, ap},{ b1, b1,…, bq},x)

The Integral-function group:

Cosine integral, Ci(x):

ci(x)

Dawson’s integral:

dawson(x)

Hyperbolic sine integral, Ssi(x):

ssi(x)

Sine integral, Si(x):

si(x)

The Legendre-function group:

Associated Legendre polynomial 1st kind,
[image: image22.wmf])

(

x

P

m

n

:
legendre({n,m},x)

Associated Legendre polynomial 2st kind,
[image: image23.wmf])

(

x

Q

m

n

:
legendr2({n,m},x)

The Lommel-function group:

Lommel function, sa,b(z):

lommels1(a,b,x)

Lommel function, Sa,b(z):

lommels2(a,b,x)
Lommel function, Ua,b(z):

lommelu(a,b,x)

Lommel function, Va,b(z):

lommelv(a,b,x)
The Parabolic Cylinder-function group:

Whittaker’s P.C., Dn(x):

paracyd(n,x)

Parabolic Cylinder, Un(x):

paracyu(n,x)

First standard solutions, Vn(x):

paracyv(n,x)

The PSI-function group:

Diagamma function, ψ(x):

dpsi(x)

Polygamma function, ψn(x):

psi(n,x)

The Thompson-function group:

Ber(v,x):

thompber(v,x)

Bei(v,x):

thompbei(v,x)

Ker(v,x):

thompker(v,x)

Kei(v,x):

thompkei(v,x)

Her(v,x):

thompher(v,x)

Hei(v,x):

thomphei(v,x)

The Whittaker-function group:

Whittaker function, Ma,b(z):

wtakerm(a,b,z)

Whittaker function, Wa,b(z):

wtakerw(a,b,z)

The Zeta-function group:

Riemann’s zeta function, ζ(x):

zeta(x)

Hurwitz’s zeta function, ζ(n,x):

hzeta(n,x)

1st derivative of the zeta function, ζ’(x):
zetaprim(x)

Number-function group:

nth Bell number:

bellnum(n)

nth Bernoulli number, B(n):

bernnum(n)

nth Catalan number:

catalan(n)

nth Euler number E(n):

eulernum(n)

nth Fibonacci number:

fibnum(n)

nth Lucas number:

lucasnum(n)

nth Pell number:

pellnum(n)

Polynomial-function group:

Bell polynomial:

bellpoly(n,x)

Bernoulli polynomial, B(n,x):

bernpoly(n,x)

Chebyshev polynomial of the fist kind, Tn(x):
chebyt(n,x)

Chebyshev polynomial of the 2nd kind, Un(x):
chebyu(n,x)

Euler polynomial, E(n,x):

euler(n,x)

Fibonacci polynomial:

fibpoly(n,x)

Hermite polynomial, Hn(x):

hermite(n,x)

Hermite polynomial, Hen(x):

hermitee(n,x)

Gegenbauer polynomial,
[image: image24.wmf])

(

x

C

m

n

:

gegenbau(n,x)

Jacobi polynomial,
[image: image25.wmf])

(

)

,

(

x

P

n

b

a

:

jacobi(n,α,β,x)

Ordinary Laguerre polynomial,
[image: image26.wmf])

(

x

L

n

:
laguerre(n,x)

Associated Laguerre polynomial,
[image: image27.wmf])

(

x

L

k

n

:
laguerre({n,k},x)

Neumann polynomial, On(x):

neupoly(n,x)

Schläfli polynomial, Sn(x):

schlpoly(n,x)

Other-function:

Anger function Jv(z):

angerj(v,z)

Chebsch-Gordan coefficient:

chebsch(j1,m1,j2,m2,j3,m3)

Harmonic function:

harmonic(x)

Lambert function W(x):

lambertw(x)

nth term Ln of the generalized Lucas sequence,
[image: image28.wmf]n

qL

n

pL

n

L

-

+

=

+

1

2

:
lucaseq(p,q,L0,L1,n)
The Moebius function μ(n):

moebius(n)

Pochhammer symbol, (a)n:

pochamer(a,n)
General Polylogarithm, Lin(z):

polylog(n,z)
Spherical Harmonic function,
[image: image29.wmf])

,

(

j

q

m

l

Y

:
sphrharm(l,m,θ,φ)

Struve function, Hn(z):

struveh(n,z)

Wigner 3j symbol,
[image: image30.wmf]÷

÷

ø

ö

ç

ç

è

æ

3

2

1

3

2

1

m

m

m

j

j

j

:

wigner3j(j1,m1,j2,m2,j3,m3)
Weber function Ev(z):

webere(v,z)
ASISFLIB special-function wish-list:

The library contains a lot of functions. However, there are still important functions missing(such as:

Zeta(n,v,z)

MeijerG

Weierstrass functions

Eliptic integrals

Acknowledgement:

Many things in ASISFLIB are based on parts of code from Bhuvanesh Bhatt’s mathtools version 2.42: http://triton.towson.edu/users/bbhatt1/ti/. Nearly all approximation algorithms come more or less directly from mathtools. In the development of the symbolic parts of the special-functions I looked into integral books as well as mathtools. However, since the special-functions from mathtools are so well programmed many parts used to evaluate symbolic expression in the ASISFLIB special-functions equalise those from mathtools. When appropriate, the names of the functions equalise those in mathtools.

In general, functions in ASISFLIB will perform their tasks at times quite similar to equivalent functions in mathtools.

Copyrights:

ASISFLIB is a resource library for ASI version 2.x and must not be distributed without ASI version 2.x neither modified nor unmodified! As long as any files from ASISFLIB is stored you must not delete the file setflags().

Disclaimer: I have tested ASISFLIB to comply with most types of input arguments. However, I shall not take responsibility of any damage or problems that ASISFLIB or program/functions using ASISFLIB might cause.

The ASISFLIB was created by: Mads Soendergaard

mailto: sondermad@hotmail.com
-The release date of this document and ASISFLIB (official version 1.00) is 1-03-2004.
1
11

_1136643636.unknown

_1137056808.unknown

_1138308623.unknown

_1137060741.unknown

_1136644645.unknown

_1137056798.unknown

_1136644903.unknown

_1136643968.unknown

_1136643423.unknown

_1136643579.unknown

_1136643377.unknown

_1136643346.unknown

